YOLOv3 的 TensorFlow 实现,GitHub 完整源码解析

来自华盛顿大学的 Joseph Redmon 和 Ali Farhadi 提出的YOLOv3 通过在 YOLO 中加入设计细节的变化,这个新模型在取得相当准确率的情况下实现了检测速度的很大提升,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。

这里附上 YOLOv3 的论文地址:

https://pjreddie.com/media/files/papers/YOLOv3.pdf

本文的项目作者是 wizyoung,原 GitHub 项目地址为:

https://github.com/wizyoung/YOLOv3_TensorFlow

1. 介绍

本文将介绍 YOLO3 的完整 TensorFlow 实现。可在自己的数据集上进行完整的训练和验证操作,pipeline 完整。其特点包括:

  • 高效的 tf.data 管道

  • 权重转换

  • GPU 提速,无限制

  • 完整的训练管道

  • 使用 kMeans 算法来选择 anchor boxes

  • 多 GPU 同步训练

2. 需求

  • tensorflow >= 1.8.0(不排除低版本也能工作)

  • opencv-python

3. 权重转换

预训练的 darknet 权重文件可从下方链接下载:

https://pjreddie.com/media/files/yolov3.weights

把下载好后的文件放在 ./data/darknet_weights/ 目录下,运行下面的命令:

python convert_weight.py

然后,转换后的 TensorFlow checkpoint 文件将被保存在 ./data/darknet_weights/ 目录下。

4. 运行 demos

在 ./data/demo_data/ 目录里有一些图像和视频的 demos 可以运行。

单个图像测试 demo:

python test_single_image.py ./data/demo_data/messi.jpg

视频测试 demo:

python video_test.py ./data/demo_data/video.mp4

结果展示:

5. 运行速度

图片尺寸为 416×416,论文实现与我的模型运行速度比较如下:

为什么会这么快呢?我们看一下论文中 ImageNet 分类情况:

6. 模型结构

为了更好地理解模型体系结构,可以参考下图:

7. 训练

首先是数据准备,分为三步。

1)annotation file

在 ./data/my_data/ 目录下生成 train.txt/val.txt/test.txt 文件。txt 文件中一行表示一张图片,形式为:图片绝对路径 + box_1 + box_2 + … + box_n。Box 的形式为:label_index + x_min + y_min + x_max + y_max,原始坐标为图片左上角。

例如:

xxx/xxx/1.jpg 0 453 369 473 391 1 588 245 608 268
xxx/xxx/2.jpg 1 466 403 485 422 2 793 300 809 320

注意:每个 txt 文件最后一行为空白行。

2)class_names file

在 ./data/my_data/ 目录下生成 data.names 文件,每一行代表一个类别名称。例如:

bird
person
bike

3)prior anchor file

使用 kMeans 算法来选择 anchor boxes:

python get_kmeans.py

然后,你将得到 9 个 anchors 和评价 IOU,把 anchors 保存在 txt 文件中。

准备完数据之后就可以开始训练了。

使用 train.py 文件,函数参数如下:

$ python train.py -h
usage: train.py [-h] [--train_file TRAIN_FILE] [--val_file VAL_FILE]
               [--restore_path RESTORE_PATH] 
               [--save_dir SAVE_DIR]
               [--log_dir LOG_DIR] 
               [--progress_log_path PROGRESS_LOG_PATH]
               [--anchor_path ANCHOR_PATH]
               [--class_name_path CLASS_NAME_PATH] [--batch_size BATCH_SIZE]
               [--img_size [IMG_SIZE [IMG_SIZE ...]]]
               [--total_epoches TOTAL_EPOCHES]
               [--train_evaluation_freq TRAIN_EVALUATION_FREQ]
               [--val_evaluation_freq VAL_EVALUATION_FREQ]
               [--save_freq SAVE_FREQ] [--num_threads NUM_THREADS]
               [--prefetech_buffer PREFETECH_BUFFER]
               [--optimizer_name OPTIMIZER_NAME]
               [--save_optimizer SAVE_OPTIMIZER]
               [--learning_rate_init LEARNING_RATE_INIT] [--lr_type LR_TYPE]
               [--lr_decay_freq LR_DECAY_FREQ]
               [--lr_decay_factor LR_DECAY_FACTOR]
               [--lr_lower_bound LR_LOWER_BOUND]
               [--restore_part [RESTORE_PART [RESTORE_PART ...]]]
               [--update_part [UPDATE_PART [UPDATE_PART ...]]]
               [--update_part [UPDATE_PART [UPDATE_PART ...]]]
               [--use_warm_up USE_WARM_UP] [--warm_up_lr WARM_UP_LR]
               [--warm_up_epoch WARM_UP_EPOCH]

8. 评价

使用 eval.py 来评估验证集和测试集,函数参数如下:

$ python eval.py -h
usage: eval.py [-h] [--eval_file EVAL_FILE] [--restore_path RESTORE_PATH]
              [--anchor_path ANCHOR_PATH] 
              [--class_name_path CLASS_NAME_PATH]
              [--batch_size BATCH_SIZE]
              [--img_size [IMG_SIZE [IMG_SIZE ...]]]
              [--num_threads NUM_THREADS]
              [--prefetech_buffer PREFETECH_BUFFER]

函数返回 loss、召回率 recall、精准率 precision,如下所示:

recall: 0.927, precision: 0.945
total_loss: 0.210, loss_xy: 0.010, loss_wh: 0.025, loss_conf: 0.125, loss_class: 0.050

9. 其它技巧

训练的时候可以尝试使用下面这些技巧:

  • Data augmentation:使用 ./utils/data_utils.py 中的 data_augmentation 方法来增加数据。

  • 像 Gluon CV 一样混合和 label 平滑。

  • 正则化技巧,例如 L2 正则化。

  • 多尺度训练:你可以像原稿中的作者那样定期改变输入图像的尺度(即不同的输入分辨率)。

完整代码请见 GitHub:

https://github.com/wizyoung/YOLOv3_TensorFlow

参考文献:

https://github.com/YunYang1994/tensorflow-yolov3

https://github.com/qqwweee/keras-yolo3

https://github.com/eriklindernoren/PyTorch-YOLOv3

https://github.com/pjreddie/darknet


未经允许不得转载:红色石头的个人博客 » YOLOv3 的 TensorFlow 实现,GitHub 完整源码解析

赞 (6) 打赏

评论 0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏