林轩田机器学习基石课程学习笔记15 — Validation

上节课我们主要讲了为了避免overfitting,可以使用regularization方法来解决。在之前的E_{in}上加上一个regularizer,生成E_{aug},将其最小化,这样可以有效减少模型的复杂度,避免过拟合现象的发生。那么,机器学习领域还有许多选择,如何保证训练的模型具有良好的泛化能力?本节课将介绍一些概念和方法来解决这个选择性的问题。

一、Model Selection Problem

机器学习模型建立的过程中有许多选择,例如对于简单的二元分类问题,首先是算法A的选择,有PLA,pocket,linear regression,logistic regression等等;其次是迭代次数T的选择,有100,1000,10000等等;之后是学习速率\eta的选择,有1,0.01,0.0001等等;接着是模型特征转换\Phi的选择,有linear,quadratic,poly-10,Legendre-poly-10等等;然后是正则化regularizer的选择,有L2,L1等等;最后是正则化系数\lambda的选择,有0,0.01,1等等。不同的选择搭配,有不同的机器学习效果。我们的目标就是找到最合适的选择搭配,得到一个好的矩g,构建最佳的机器学习模型。

假设有M个模型,对应有H_1,H_2,\cdots,H_M,即有M个hypothesis set,演算法为A_1,A_2,\cdots,A_M,共M个。我们的目标是从这M个hypothesis set中选择一个模型H_{m^*},通过演算法A_{m^*}对样本集D的训练,得到一个最好的矩g_{m^*},使其E_{out}(g_{m^*})最小。所以,问题的关键就是机器学习中如何选择到最好的矩g_{m^*}

考虑有这样一种方法,对M个模型分别计算使E_{in}最小的矩g,再横向比较,取其中能使E_{in}最小的模型的矩g_{m^*}

但是E_{in}足够小并不能表示模型好,反而可能表示训练的矩g_{m^*}发生了过拟合,泛化能力很差。而且这种“模型选择+学习训练”的过程,它的VC Dimension是d_{VC}(H_1\cup H_2),模型复杂度增加。总的来说,泛化能力差,用E_{in}来选择模型是不好的。

另外一种方法,如果有这样一个独立于训练样本的测试集,将M个模型在测试集上进行测试,看一下E_{test}的大小,则选取E_{test}最小的模型作为最佳模型:

这种测试集验证的方法,根据finite-bin Hoffding不等式,可以得到:

E_{out}(g_{m^*})\leq E_{test}(g_{m^*})+O(\sqrt \frac{log M}{N_{test}})

由上式可以看出,模型个数M越少,测试集数目越大,那么O(\sqrt \frac{log M}{N_{test}})越小,即E_{test}(g_{m^*})越接近于E_{out}(g_{m^*})

下面比较一下之前讲的两种方法,第一种方法使用E_{in}作为判断基准,使用的数据集就是训练集D本身;第二种方法使用E_{test}作为判断基准,使用的是独立于训练集D之外的测试集。前者不仅使用D来训练不同的g_m,而且又使用D来选择最好的g_{m^*},那么g_{m^*}对未知数据并不一定泛化能力好。举个例子,这相当于老师用学生做过的练习题再来对学生进行考试,那么即使学生得到高分,也不能说明他的学习能力强。所以最小化E_{in}的方法并不科学。而后者使用的是独立于D的测试集,相当于新的考试题能更好地反映学生的真实水平,所以最小化E_{test}更加理想。

但是,我们拿到的一都是训练集D,测试集是拿不到的。所以,寻找一种折中的办法,我们可以使用已有的训练集D来创造一个验证集validation set,即从D中划出一部分D_{val}作为验证集。D另外的部分作为训练模型使用,D_{val}独立开来,用来测试各个模型的好坏,最小化E_{val},从而选择最佳的g_{m^*}

二、Validation

从训练集D中抽出一部分K个数据作为验证集D_{val}D_{val}对应的error记为E_{val}。这样做的一个前提是保证D_{val}独立同分布(iid)于P(x,y),也就是说D_{val}的选择是从D中平均随机抽样得到的,这样能够把E_{val}E_{out}联系起来。D中去除D_{val}后的数据就是供模型选择的训练数据D_{train},其大小为N-k。从D_{train}中选择最好的矩,记为g_m^-

假如D共有1000个样本,那么可以选择其中900个D_{train},剩下的100个作为D_{val}。使用D_{train}训练模型,得到最佳的g_m^-,使用g_m^-D_{val}进行验证,得到如下Hoffding不等式:

E_{out}(g_m^-)\leq E_{val}(g_m^-)+O(\sqrt \frac{log M}{K})

假设有M种模型hypothesis set,D_{val}的数量为K,那么从每种模型m中得到一个在D_{val}上表现最好的矩,再横向比较,从M个矩中选择一个最好的m*作为我们最终得到的模型。

现在由于数量为N的总样本D的一部分K作为验证集,那么只有N-k个样本可供训练。从D_{train}中得到最好的g_{m^*}^-,而总样本D对应的最好的矩为g_{m^*}。根据之前的leraning curve很容易知道,训练样本越多,得到的模型越准确,其hypothesis越接近target function,即D的E_{out}D_{train}E_{out}要小:

所以,我们通常的做法是通过D_{val}来选择最好的矩g_{m^*}^-对应的模型m^*,再对整体样本集D使用该模型进行训练,最终得到最好的矩g_{m^*}

总结一下,使用验证集进行模型选择的整个过程为:先将D分成两个部分,一个是训练样本D_{train},一个是验证集D_{val}。若有M个模型,那么分别对每个模型在D_{train}上进行训练,得到矩g_{m}^-,再用D_{val}对每个g_{m}^-进行验证,选择表现最好的矩g_{m^*}^-,则该矩对应的模型被选择。最后使用该模型对整个D进行训练,得到最终的g_{m^*}。下图展示了整个模型选择的过程:

不等式关系满足:

E_{out}(g_{m^*})\leq E_{out}(g_{m^*}^-)\leq E_{val}(g_{m^*}^-)+O(\sqrt \frac{log M}{K})

下面我们举个例子来解释这种模型选择的方法的优越性,假设有两个模型:一个是5阶多项式H_{\Phi_5},一个是10阶多项式H_{\Phi_{10}}。通过不使用验证集和使用验证集两种方法对模型选择结果进行比较,分析结果如下:

图中,横坐标表示验证集数量K,纵坐标表示E_{out}大小。黑色水平线表示没有验证集,完全使用E_{in}进行判断基准,那么H_{\Phi_{10}}更好一些,但是这种方法的E_{out}比较大,而且与K无关。黑色虚线表示测试集非常接近实际数据,这是一种理想的情况,其E_{out}很小,同样也与K无关,实际中很难得到这条虚线。红色曲线表示使用验证集,但是最终选取的矩是g_{m^*}^-,其趋势是随着K的增加,它对应的E_{out}先减小再增大,当K大于一定值的时候,甚至会超过黑色水平线。蓝色曲线表示也使用验证集,最终选取的矩是g_{m^*},其趋势是随着K的增加,它对应的E_{out}先缓慢减小再缓慢增大,且一直位于红色曲线和黑色直线之下。从此可见,蓝色曲线对应的方法最好,符合我们之前讨论的使用验证集进行模型选择效果最好。

这里提一点,当K大于一定的值时,红色曲线会超过黑色直线。这是因为随着K的增大,D_{val}增大,但可供模型训练的D_{train}在减小,那得到的g_{m^*}^-不具有很好的泛化能力,即对应的E_{out}会增大,甚至当K增大到一定值时,比E_{in}模型更差。

那么,如何设置验证集K值的大小呢?根据之前的分析:

当K值很大时,E_{val}\approx E_{out},但是g_m^-g_m相差很大;当K值很小是,g_m^-\approx g_m,但是E_{val}E_{out}可能相差很大。所以有个折中的办法,通常设置k=\frac N5。值得一提的是,划分验证集,通常并不会增加整体时间复杂度,反而会减少,因为D_{train}减少了。

三、Leave-One-Out Cross Validation

假如考虑一个极端的例子,k=1,也就是说验证集大小为1,即每次只用一组数据对g_m进行验证。这样做的优点是g_m^-\approx g_m,但是E_{val}E_{out}可能相差很大。为了避免E_{val}E_{out}相差很大,每次从D中取一组作为验证集,直到所有样本都作过验证集,共计算N次,最后对验证误差求平均,得到E_{loocv}(H,A),这种方法称之为留一法交叉验证,表达式为:

E_{loocv}(H,A)=\frac1N\sum_{n=1}^Ne_n=\frac1N\sum_{n=1}^Nerr(g_n^-(x_n),y_n)

这样求平均的目的是为了让E_{loocv}(H,A)尽可能地接近E_{out}(g)

下面用一个例子图解留一法的过程:

如上图所示,要对二维平面上的三个点做拟合,上面三个图表示的是线性模型,下面三个图表示的是常数模型。对于两种模型,分别使用留一交叉验证法来计算E_{loocv},计算过程都是每次将一个点作为验证集,其他两个点作为训练集,最终将得到的验证误差求平均值,就得到了E_{loocv}(linear)E_{loocv}(constant),比较两个值的大小,取值小对应的模型即为最佳模型。

接下来,我们从理论上分析Leave-One-Out方法的可行性,即E_{loocv}(H,A)是否能保证E_{out}的矩足够好?假设有不同的数据集D,它的期望分布记为\varepsilon_D,则其E_{loocv}(H,A)可以通过推导,等于E_{out}(N-1)的平均值。由于N-1近似为N,E_{out}(N-1)的平均值也近似等于E_{out}(N)的平均值。具体推导过程如下:

最终我们得到的结论是E_{loocv}(H,A)的期望值和E_{out}(g^-)的期望值是相近的,这代表得到了比较理想的E_{out}(g),Leave-One-Out方法是可行的。

举一个例子,使用两个特征:Average Intensity和Symmetry加上这两个特征的非线性变换(例如高阶项)来进行手写数字识别。平面特征分布如下图所示:

Error与特征数量的关系如下图所示:

从图中我们看出,随着特征数量的增加,E_{in}不断减小,E_{out}先减小再增大,虽然E_{in}是不断减小的,但是它与E_{out}的差距越来越大,发生了过拟合,泛化能力太差。而E_{cv}E_{out}的分布基本一致,能较好地反映E_{out}的变化。所以,我们只要使用Leave-One-Out方法得到使E_{cv}最小的模型,就能保证其E_{out}足够小。下图是分别使用E_{in}E_{out}进行训练得到的分类曲线:

很明显可以看出,使用E_{in}发生了过拟合,而E_{loocv}分类效果更好,泛化能力强。

四、V-Fold Cross Validation

接下来我们看看Leave-One-Out可能的问题是什么。首先,第一个问题是计算量,假设N=1000,那么就需要计算1000次的E_{loocv},再计算其平均值。当N很大的时候,计算量是巨大的,很耗费时间。第二个问题是稳定性,例如对于二分类问题,取值只有0和1两种,预测本身存在不稳定的因素,那么对所有的E_{loocv}计算平均值可能会带来很大的数值跳动,稳定性不好。所以,这两个因素决定了Leave-One-Out方法在实际中并不常用。

针对Leave-One-Out的缺点,我们对其作出了改进。Leave-One-Out是将N个数据分成N分,那么改进措施是将N个数据分成V份(例如V=10),计算过程与Leave-One-Out相似。这样可以减少总的计算量,又能进行交叉验证,得到最好的矩,这种方法称为V-折交叉验证。其实Leave-One-Out就是V-折交叉验证的一个极端例子。

E_{cv}(H,A)=\frac1V\sum_{v=1}^VE_{val}^{(V)}(g_V^-)

所以呢,一般的Validation使用V-折交叉验证来选择最佳的模型。值得一提的是Validation的数据来源也是样本集中的,所以并不能保证交叉验证的效果好,它的模型一定好。只有样本数据越多,越广泛,那么Validation的结果越可信,其选择的模型泛化能力越强。

五、总结

本节课主要介绍了Validation验证。先从如何选择一个好的模型开始切入,例如使用E_{in}E_{test}都是不太好的,最终使用E_{val}来进行模型选择。然后详细介绍了Validation的过程。最后,介绍了Leave-One-Out和V-Fold Cross两种验证方法,比较它们各自的优点和缺点,实际情况下,V-Fold Cross更加常用。

注明:
文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程

更多AI资源请关注公众号:A有道(ID:redstonewill)

未经允许不得转载:红色石头的个人博客 » 林轩田机器学习基石课程学习笔记15 — Validation

赞 (2) 打赏

评论 0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏