ODS:输出多样化采样,有效增强白盒和黑盒攻击的性能 | NeurIPS 2020
14红色石头 发布于 2021-04-16
【简介】 本文提出了一种新的采样策略——输出多样化采样,替代对抗攻击方法中常用的随机采样,使得目标模型的输出尽可能多样化,以此提高白盒攻击和黑盒攻击的有效性。实验表明,该种采样策略可以显著提升对抗攻击方法的性能。 论文地址: https://arxiv.org/abs/2003....
阅读(4168)评论(0)赞 (2)
红色石头 发布于 2021-04-16
【简介】 本文提出了一种新的采样策略——输出多样化采样,替代对抗攻击方法中常用的随机采样,使得目标模型的输出尽可能多样化,以此提高白盒攻击和黑盒攻击的有效性。实验表明,该种采样策略可以显著提升对抗攻击方法的性能。 论文地址: https://arxiv.org/abs/2003....
阅读(4168)评论(0)赞 (2)
红色石头 发布于 2021-03-15
实际工作中,目标检测 yolov3 或者 yolov4 模型移植到 AI 芯片中,经常需要将其先转换为 caffe1.x 模型,大家可能或多或少也有这方面的需求。例如华为海思 NNIE 只支持caffe1.x 模型,所以 yolov3/yolov4 模型要想在海思芯片上部署,转换...
阅读(6187)评论(0)赞 (1)
红色石头 发布于 2021-03-03
今天给大家推荐一个硬核干货:一个基于 PyTorch 的图像模型库(PyTorch Image Models,TIMM),用于最新图像分类。 这个库从 330+ 种预训练的最新图像分类模型中进行选择,方便我们使用提供的脚本在 ImageNet 等研究数据集上重新训练模型。而且,可...
阅读(6133)评论(0)赞 (3)
红色石头 发布于 2020-11-27
大家还记得这张图吗? 之前,红色石头发文介绍过一份很不错的资源: 52 个深度学习目标检测模型汇总,论文、源码一应俱全! 深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的...
阅读(4953)评论(0)赞 (1)
红色石头 发布于 2020-07-16
大名鼎鼎的 Mask RCNN 一举夺得 ICCV2017 Best Paper,名声大造。Mask RCNN 是何恺明基于以往的 Faster RCNN 架构提出的新的卷积网络,实现高效地检测图中的物体,并同时生成一张高质量的每个个体的分割掩码,即有效地目标的同时完成了高质量的...
阅读(9909)评论(0)赞 (4)
红色石头 发布于 2020-06-28
如今,AI有道已经陪伴读者两年了。在这段时间里,我们一直专注于人工智能最前沿的技术、干货和资讯,努力为读者呈现最有价值的 AI 信息,致力于为读者提供切实可行的 AI 学习路线。 两年的时间,我们已经发布了超过 160 篇技术干货文章,52 万字,电子版总共 1700 多页。内容...
阅读(30198)评论(0)赞 (13)
红色石头 发布于 2020-03-16
目标检测作为计算机视觉中的一个重要分支,近些年来随着神经网络理论研究的深入和硬件 GPU 算力的大幅度提升,一举成为全球人工智能研究的热点,落地项目也最先开始。 纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年...
阅读(7523)评论(0)赞 (5)
红色石头 发布于 2020-02-28
自 2017 年 1 月 PyTorch 推出以来,其热度持续上升。PyTorch 能在短时间内被众多研究人员和工程师接受并推崇是因为其有着诸多优点,如采用 Python 语言、动态图机制、网络构建灵活以及拥有强大的社群等。 最近红色石头在浏览 GitHub 的时候发现了一份超赞...
阅读(6154)评论(0)赞 (4)
红色石头 发布于 2020-01-06
说到深度学习自然语言处理的经典课程,第一个想到的就是斯坦福大学的 CS224N 课程。这门课是当之无愧的 NLP 经典课程。 CS224N 一直在保持更新,目前已经更新到了最新的 2019 版。本文将会详细整理出 CS224N(2019) 全套资源,包含 ppt、作业、项目等。 ...
阅读(6412)评论(0)赞 (1)
红色石头 发布于 2020-01-06
这里不再介绍 mmdetection 的安装和配置,使用 mmdetection 较简单的方法是使用已安装 mmdetection 的 docker 容器。这样直接省去了安装 mmdetection 的过程,让重心放在模型训练上! 如果你对 docker 和 mmdetectio...
阅读(7154)评论(0)赞 (2)