红色石头的个人博客红色石头的个人博客

notice GitChat 深度学习极简教程正式上线!《深度学习 Python 入门与实战》

所有文章 第4页

吴恩达machine learning

吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习

21

红色石头 发布于 2020-11-28

0. 引言 吴恩达(Andrew Ng),毫无疑问,是全球人工智能(AI)领域的大 IP!然而,吴恩达从最早的 CS229,到后来的 deeplearning.ai 深度学习专项课程,还有其它 AI 资源,大神发布的 AI 知名课程和资料非常多。 说到吴恩达优秀的 AI 课程,首...

阅读(5388)评论(0)赞 (6)

机器学习

9 大主题!机器学习算法理论面试题大汇总

9

红色石头 发布于 2020-11-27

机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。 算法理论基础不仅包含基本概念、数学基础,也包含了机器学习、深度学习相关。今天给大家推荐一个不错的算法理论基础面试题汇总资源,已开源~ 首先放上这份开源面试...

阅读(3190)评论(0)赞 (1)

深度学习

9 大主题卷积神经网络(CNN)的 PyTorch 实现

15

红色石头 发布于 2020-11-27

大家还记得这张图吗? 之前,红色石头发文介绍过一份很不错的资源: 52 个深度学习目标检测模型汇总,论文、源码一应俱全! 深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的...

阅读(3523)评论(0)赞 (1)

深度学习

从零开始 Mask RCNN 实战:基于 Win10 的 Mask RCNN 环境搭建

10

红色石头 发布于 2020-07-16

大名鼎鼎的 Mask RCNN 一举夺得 ICCV2017 Best Paper,名声大造。Mask RCNN 是何恺明基于以往的 Faster RCNN 架构提出的新的卷积网络,实现高效地检测图中的物体,并同时生成一张高质量的每个个体的分割掩码,即有效地目标的同时完成了高质量的...

阅读(8381)评论(0)赞 (4)

机器学习

一个网站拿下机器学习优质资源!搜索效率提高 50%

12

红色石头 发布于 2020-06-28

现在大家平时会遇到很多不错的机器学习资源,但是大多数情况下,资源比较分散,不方便集中管理和查阅。更重要的是往往很难找到一个系统完整的资源导航,形成系统的学习路线,方便搜索。 重磅!今天小编在网上“闲逛”的时候发现了一个超级棒的机器学习优质资源分类导航。至少节约大家 50% 的时间...

阅读(8418)评论(0)赞 (1)

特征工程

【完结篇】专栏 | 基于 Jupyter 的特征工程手册:特征降维

4

红色石头 发布于 2020-06-28

作者:陈颖祥、杨子晗 编译:AI有道编译:AI有道 经过数据预处理和特征选择,我们已经生成了一个很好的特征子集。但是有时该子集可能仍然包含过多特征,导致需要花费太多的计算能力用以训练模型。在这种情况下,我们可以使用降维技术进一步压缩特征子集。但这可能会降低模型性能。 同时,如果我...

阅读(7480)评论(0)赞 (0)

特征工程

专栏 | 基于 Jupyter 的特征工程手册:特征选择(五)

5

红色石头 发布于 2020-05-24

数据预处理后,我们生成了大量的新变量(比如独热编码生成了大量仅包含0或1的变量)。但实际上,部分新生成的变量可能是多余:一方面它们本身不一定包含有用的信息,故无法提高模型性能;另一方面过这些多余变量在构建模型时会消耗大量内存和计算能力。因此,我们应该进行特征选择并选择特征子集进行...

阅读(7630)评论(0)赞 (2)

特征工程

专栏 | 基于 Jupyter 的特征工程手册:特征选择(四)

6

红色石头 发布于 2020-05-07

数据预处理后,我们生成了大量的新变量(比如独热编码生成了大量仅包含0或1的变量)。但实际上,部分新生成的变量可能是多余:一方面它们本身不一定包含有用的信息,故无法提高模型性能;另一方面过这些多余变量在构建模型时会消耗大量内存和计算能力。因此,我们应该进行特征选择并选择特征子集进行...

阅读(8274)评论(0)赞 (1)

特征工程

专栏 | 基于 Jupyter 的特征工程手册:特征选择(三)

6

红色石头 发布于 2020-04-24

数据预处理后,我们生成了大量的新变量(比如独热编码生成了大量仅包含0或1的变量)。但实际上,部分新生成的变量可能是多余:一方面它们本身不一定包含有用的信息,故无法提高模型性能;另一方面过这些多余变量在构建模型时会消耗大量内存和计算能力。因此,我们应该进行特征选择并选择特征子集进行...

阅读(7963)评论(0)赞 (2)