标签:机器学习 第2页

吴恩达machine learning

吴恩达《Machine Learning》精炼笔记 4:神经网络基础

25

红色石头 发布于 2021-01-14

今天带来第四周课程的笔记:神经网络基础。 非线性假设 神经元和大脑 模型表示 特征和直观理解 多类分类问题 非线性假设Non-linear Hypotheses 线性回归和逻辑回归的缺点:特征太多的时候,计算负荷会非常大 假设我们希望训练一个模型来识别视觉对象(例如识别一张图片上...

阅读(1699)评论(0)赞 (0)

吴恩达machine learning

吴恩达《Machine Learning》精炼笔记 3:回归问题和正则化

36

红色石头 发布于 2021-01-14

今天带来第三周课程的笔记:回归问题和正则化。 主要讲解的内容包含: 逻辑回归 代价函数 线性回归和逻辑回归的比较 正则化问题 逻辑回归 分类问题 逻辑回归 分类问题 假设预测的变量y是离散的值,需要使用逻辑回归Logistic Regression,LR的算法,实际上它是一种分类...

阅读(1682)评论(0)赞 (0)

吴恩达machine learning

吴恩达《Machine Learning》精炼笔记 2:梯度下降与正规方程

22

红色石头 发布于 2020-12-24

今天带来第二周课程的笔记:梯度下降与正规方程。 主要内容: 多维特征 多变量梯度下降 梯度下降法实践 正规方程 多维特征Multiple Features 多维特征Multiple Features 还是利用房价模型的例子,增加了更多的特征,比如:房间楼层、房间数量、地理位置等,...

阅读(2470)评论(0)赞 (0)

吴恩达machine learning

吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习

21

红色石头 发布于 2020-11-28

0. 引言 吴恩达(Andrew Ng),毫无疑问,是全球人工智能(AI)领域的大 IP!然而,吴恩达从最早的 CS229,到后来的 deeplearning.ai 深度学习专项课程,还有其它 AI 资源,大神发布的 AI 知名课程和资料非常多。 说到吴恩达优秀的 AI 课程,首...

阅读(4162)评论(0)赞 (4)

机器学习

9 大主题!机器学习算法理论面试题大汇总

9

红色石头 发布于 2020-11-27

机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。 算法理论基础不仅包含基本概念、数学基础,也包含了机器学习、深度学习相关。今天给大家推荐一个不错的算法理论基础面试题汇总资源,已开源~ 首先放上这份开源面试...

阅读(2496)评论(0)赞 (0)

机器学习

1700 页,52 万字,6 大主题…

9

红色石头 发布于 2020-06-28

如今,AI有道已经陪伴读者两年了。在这段时间里,我们一直专注于人工智能最前沿的技术、干货和资讯,努力为读者呈现最有价值的 AI 信息,致力于为读者提供切实可行的 AI 学习路线。 两年的时间,我们已经发布了超过 160 篇技术干货文章,52 万字,电子版总共 1700 多页。内容...

阅读(10806)评论(0)赞 (7)

机器学习

一个网站拿下机器学习优质资源!搜索效率提高 50%

12

红色石头 发布于 2020-06-28

现在大家平时会遇到很多不错的机器学习资源,但是大多数情况下,资源比较分散,不方便集中管理和查阅。更重要的是往往很难找到一个系统完整的资源导航,形成系统的学习路线,方便搜索。 重磅!今天小编在网上“闲逛”的时候发现了一个超级棒的机器学习优质资源分类导航。至少节约大家 50% 的时间...

阅读(7670)评论(0)赞 (1)

特征工程

【完结篇】专栏 | 基于 Jupyter 的特征工程手册:特征降维

4

红色石头 发布于 2020-06-28

作者:陈颖祥、杨子晗 编译:AI有道编译:AI有道 经过数据预处理和特征选择,我们已经生成了一个很好的特征子集。但是有时该子集可能仍然包含过多特征,导致需要花费太多的计算能力用以训练模型。在这种情况下,我们可以使用降维技术进一步压缩特征子集。但这可能会降低模型性能。 同时,如果我...

阅读(6922)评论(0)赞 (0)

特征工程

专栏 | 基于 Jupyter 的特征工程手册:特征选择(五)

5

红色石头 发布于 2020-05-24

数据预处理后,我们生成了大量的新变量(比如独热编码生成了大量仅包含0或1的变量)。但实际上,部分新生成的变量可能是多余:一方面它们本身不一定包含有用的信息,故无法提高模型性能;另一方面过这些多余变量在构建模型时会消耗大量内存和计算能力。因此,我们应该进行特征选择并选择特征子集进行...

阅读(7078)评论(0)赞 (2)