标签:神经网络

机器学习

ODS:输出多样化采样,有效增强白盒和黑盒攻击的性能 | NeurIPS 2020

14

红色石头 发布于 2021-04-16

【简介】 本文提出了一种新的采样策略——输出多样化采样,替代对抗攻击方法中常用的随机采样,使得目标模型的输出尽可能多样化,以此提高白盒攻击和黑盒攻击的有效性。实验表明,该种采样策略可以显著提升对抗攻击方法的性能。 论文地址: https://arxiv.org/abs/2003....

阅读(1806)评论(0)赞 (2)

深度学习

9 大主题卷积神经网络(CNN)的 PyTorch 实现

15

红色石头 发布于 2020-11-27

大家还记得这张图吗? 之前,红色石头发文介绍过一份很不错的资源: 52 个深度学习目标检测模型汇总,论文、源码一应俱全! 深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的...

阅读(3087)评论(0)赞 (0)

资料下载

撒花!《神经网络与深度学习》中文教程正式开源!复旦邱锡鹏所著

3

红色石头 发布于 2019-04-10

红色石头之前在某乎上回答“机器学习该怎么入门”这个问题的时候,曾经给入门学者提过一个建议,就是放弃海量资料。确实,资料不在多而在精!一份优秀的资料完全可以帮助我们快速地入门和进阶。 今天给大家推荐一份最近新出的非常火热的深度学习入门教程:《神经网络与深度学习》,这本书由复旦大学的...

阅读(5890)评论(0)赞 (8)

深度学习

快速入门——深度学习理论解析与实战应用

4

红色石头 发布于 2018-08-03

1. 前言 说实话,我也是一个美剧迷,特别是一些烧脑的美剧,更是一追再追。前端时间,《西部世界》第二季也完结了。我一鼓作气,看完之后,大呼过瘾,深深地被其中栩栩如生的人工智能机器人所吸引。不禁感叹:现实世界真的会出现这样厉害的人工智能吗? 这虽然是一个看似遥远的事情,但也真的不好...

阅读(7848)评论(0)赞 (3)

吴恩达deeplearning.ai

吴恩达《神经网络与深度学习》课程笔记(5)– 深层神经网络

7

红色石头 发布于 2018-07-30

本节课主要介绍了深层神经网络,是上一节浅层神经网络的拓展和归纳。首先,我们介绍了建立神经网络模型一些常用的标准的标记符号。然后,用流程块图的方式详细推导正向传播过程和反向传播过程的输入输出和参数表达式。我们也从提取特征复杂性和计算量的角度分别解释了深层神经网络为什么优于浅层神经网...

阅读(6309)评论(0)赞 (7)

吴恩达deeplearning.ai

吴恩达《神经网络与深度学习》课程笔记(4)– 浅层神经网络

16

红色石头 发布于 2018-07-30

本节课主要介绍了浅层神经网络。首先,我们简单概述了神经网络的结构:包括输入层,隐藏层和输出层。然后,我们以计算图的方式推导了神经网络的正向输出,并以向量化的形式归纳出来。接着,介绍了不同的激活函数并做了比较,实际应用中根据不同需要选择合适的激活函数。激活函数必须是非线性的,不然神...

阅读(6547)评论(0)赞 (5)

吴恩达deeplearning.ai

吴恩达《神经网络与深度学习》课程笔记(3)– 神经网络基础之Python与向量化

2

红色石头 发布于 2018-07-29

本节课我们主要介绍了神经网络基础——python和向量化。在深度学习程序中,使用向量化和矩阵运算的方法能够大大提高运行速度,节省时间。以逻辑回归为例,我们将其算法流程包括梯度下降转换为向量化的形式。同时,我们也介绍了python的相关编程方法和技巧。...

阅读(5439)评论(0)赞 (4)

吴恩达deeplearning.ai

吴恩达《神经网络与深度学习》课程笔记(2)– 神经网络基础之逻辑回归

8

红色石头 发布于 2018-07-29

本节课的内容比较简单,主要介绍了神经网络的基础——逻辑回归。首先,我们介绍了二分类问题,以图片为例,将多维输入x转化为feature vector,输出y只有{0,1}两个离散值。接着,我们介绍了逻辑回归及其对应的Cost function形式。然后,我们介绍了梯度下降算法,并使...

阅读(7173)评论(0)赞 (14)

吴恩达deeplearning.ai

吴恩达《神经网络与深度学习》课程笔记(1)– 深度学习概述

11

红色石头 发布于 2018-07-29

本节课的内容比较简单,主要对深度学习进行了简要概述。首先,我们使用房价预测的例子来建立最简单的但个神经元组成的神经网络模型。然后,我们将例子复杂化,建立标准的神经网络模型结构。接着,我们从监督式学习入手,介绍了不同的神经网络类型,包括Standard NN,CNN和RNN。不同的...

阅读(10864)评论(0)赞 (21)