标签:SVM

机器学习

13 种机器学习算法概述(附 Python、R 代码)

12

红色石头 发布于 2018-09-03

谷歌的自动驾驶汽车和机器人研发之路受到很多阻碍,但该公司真正的未来是机器学习,这种技术使计算机变得更加智能和个性化。 —— Eric Schmidt (谷歌主席) 我们可能生活在人类历史上最具决定性的时期。计算机正从大型主机过渡到 PC 再过渡到云计算。但它的定义不是发生了什么,...

阅读(1073)评论(0)赞 (1)

林轩田机器学习技法

林轩田机器学习技法课程学习笔记4 — Soft-Margin Support Vector Machine

19

红色石头 发布于 2018-07-25

本节课主要介绍了Soft-Margin SVM。我们的出发点是与Hard-Margin SVM不同,不一定要将所有的样本点都完全分开,允许有分类错误的点,而使margin比较宽。然后,我们根据之前介绍的Dual SVM,推导出了Soft-Margin SVM的QP形式。接着介绍了...

阅读(357)评论(0)赞 (1)

林轩田机器学习技法

林轩田机器学习技法课程学习笔记3 — Kernel Support Vector Machine

23

红色石头 发布于 2018-07-25

本节课主要介绍了Kernel Support Vector Machine。首先,我们将特征转换和计算内积的操作合并到一起,消除了矩阵内积复杂的影响,提高了计算速度。然后,分别推导了Polynomial Kernel和Gaussian Kernel,并列举了各自的优缺点并做了比较...

阅读(289)评论(0)赞 (0)

林轩田机器学习技法

林轩田机器学习技法课程学习笔记2 — Dual Support Vector Machine

23

红色石头 发布于 2018-07-25

本节课主要介绍了SVM的另一种形式:Dual SVM。Dual SVM的推导过程是通过引入拉格朗日因子,将SVM转化为新的非条件形式;然后,利用QP,得到最佳解的拉格朗日因子;再通过KKT条件,计算得到对应的w和b。最终求得fattest hyperplane。

阅读(305)评论(0)赞 (1)

林轩田机器学习技法

轩田机器学习技法课程学习笔记1 — Linear Support Vector Machine

22

红色石头 发布于 2018-07-25

本节课主要介绍了线性支持向量机(Linear Support Vector Machine)。我们先从视觉角度出发,希望得到一个比较“胖”的分类面,即满足所有的点距离分类面都尽可能远。然后,我们通过一步步推导和简化,最终把这个问题转换为标准的二次规划(QP)问题。二次规划问题可以...

阅读(1466)评论(0)赞 (2)